Math 217 Fall 2025 Quiz 21 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Let $\mathfrak{B} = (v_1, \dots, v_d)$ be a basis for the vector space V. Let $v \in V$. The \mathfrak{B} -coordinates of v are ...

Solution: The unique scalars $a_1, \ldots, a_d \in \mathbb{R}$ such that

$$v = a_1 v_1 + \dots + a_d v_d.$$

(b) Let $\mathfrak{B} = (v_1, \ldots, v_d)$ be a basis for the vector space V. Let $v \in V$. The \mathfrak{B} -coordinate column vector of v is ...

Solution: The column vector formed from the \mathfrak{B} -coordinates of v:

$$[v]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix} \in \mathbb{R}^d, \text{ where } v = a_1v_1 + \dots + a_dv_d.$$

(c) Let $T: V \to V$ be linear and $\mathfrak{B} = (v_1, \ldots, v_n)$ an ordered basis of V. The matrix of T with respect to \mathfrak{B} is ...

Solution: The $n \times n$ matrix $[T]_{\mathfrak{B}}$ whose j-th column is $[T(v_j)]_{\mathfrak{B}}$; i.e.

$$[T]_{\mathfrak{B}} = \begin{bmatrix} | & | \\ [T(v_1)]_{\mathfrak{B}} & \cdots & [T(v_n)]_{\mathfrak{B}} \\ | & | \end{bmatrix}.$$

2. Suppose V is a vector space and v_1, v_2, \ldots, v_m are linearly independent vectors in V. Show that $v \in V \setminus \text{Span}(v_1, \ldots, v_m)$ if and only if the vectors v, v_1, \ldots, v_m are linearly independent.

Solution: (\Rightarrow) Suppose $v \notin \text{Span}(v_1, \dots, v_m)$ and $av + \sum_{i=1}^m b_i v_i = 0$. If $a \neq 0$, then

$$v = -\frac{1}{a} \sum_{i=1}^{m} b_i v_i \in \operatorname{Span}(v_1, \dots, v_m),$$

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

a contradiction. Hence a=0, and by independence of v_1, \ldots, v_m we get $b_1=\cdots=b_m=0$. (\Leftarrow) If $v\in \mathrm{Span}(v_1,\ldots,v_m)$, then $v=\sum_{i=1}^m c_iv_i$ for some c_i , so

$$v - \sum_{i=1}^{m} c_i v_i = 0$$

is a nontrivial linear relation among v, v_1, \ldots, v_m , contradicting their independence. Thus $v \notin \mathrm{Span}(v_1, \ldots, v_m)$.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose $V = \mathbb{R}^{2\times 2}$ with basis $\mathfrak{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Consider the linear transformation $T : \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ that sends X to AX, where $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$. The matrix of T with respect to \mathfrak{B} is

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 2 \end{bmatrix}.$$

Solution: FALSE. Let $E_{11}, E_{12}, E_{21}, E_{22}$ denote the listed basis. Compute:

$$AE_{11} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = 2E_{11},$$

$$AE_{12} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} = 2E_{12},$$

$$AE_{21} = \begin{bmatrix} 3 & 0 \\ 2 & 0 \end{bmatrix} = 3E_{11} + 2E_{21},$$

$$AE_{22} = \begin{bmatrix} 0 & 3 \\ 0 & 2 \end{bmatrix} = 3E_{12} + 2E_{22}.$$

Thus the columns of $[T]_{\mathfrak{B}}$ are $\begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\2\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\0\\2\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\2 \end{bmatrix}$, so

$$[T]_{\mathfrak{B}} = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix},$$

which is not the given matrix.